Tunnelling of topological line defects in strongly coupled superfluids
نویسنده
چکیده
Abstract. The geometric theory of vortex tunnelling in superfluid liquids is developed. Geometry rules the tunnelling process in the approximation of an incompressible superfluid, which yields the identity of phase and configuration space in the vortex collective co-ordinate. To exemplify the implications of this approach to tunnelling, we solve explicitly for the two-dimensional motion of a point vortex in the presence of an ellipse, showing that the hydrodynamic collective co-ordinate description limits the constant energy paths allowed for the vortex in configuration space. We outline the experimental procedure used in helium II to observe tunnelling events, and compare the conclusions we draw to the experimental results obtained so far. Tunnelling in Fermi superfluids is discussed, where it is assumed that the low energy quasiparticle excitations localised in the vortex core govern the vortex dynamical equations. The tunnelling process can be dominated by Hall or dissipative terms, respectively be under the influence of both, with a possible realization of this last intermediate case in unconventional, high-temperature superconductors.
منابع مشابه
Berezinskii-Kosterlitz-Thouless phase transition in 2D spin-orbit-coupled Fulde-Ferrell superfluids.
The experimental observation of traditional Zeeman-field induced Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) superfluids has been hindered by various challenges, in particular, the requirement of low dimensional systems. In 2D, finite temperature phase fluctuations lead to an extremely small Berezinskii-Kosterlitz-Thouless (BKT) transition temperature for FFLO superfluids, raising serious concerns ...
متن کاملobserved and to be observed
Linear defects are generic in continuous media. In quantum systems they appear as topological line defects which are associated with a circulating persistent current. In relativistic quantum vacuum they are known as cosmic strings, in superconductors as quantized flux lines, and in superfluids and low-density atomic Bose-Einstein condensates as quantized vortex lines. We discuss unconventional ...
متن کاملPhase-locking transition of coupled low-dimensional superfluids
We study the phase-locking transition of two coupled low-dimensional superfluids, either two-dimensional superfluids at finite temperature, or one-dimensional superfluids at zero temperature. We find that the superfluids have a strong tendency to phase-lock. The phase-locking is accompanied by a sizeable increase of the transition temperature Tc (in 2D systems) of the resulting double-layer sup...
متن کاملSe p 19 99 On the Theory of Vortex Tunnelling
The present work investigates the theoretical framework governing the quantum process of tunnelling for a vortex moving in a superfluid liquid. We derive, in the first chapter, the general local, nondissipative equations of motion for the vortex. This derivation is carried out for a pure superfluid with isotropic gap at the absolute zero of temperature, on the level of a hydrodynamic, collectiv...
متن کاملDrag effect and topological complexes in strongly interacting two-component lattice superfluids.
The mutual drag in strongly interacting two-component superfluids in optical lattices is discussed. Two competing drag mechanisms are the vacancy-assisted motion and proximity to a quasimolecular state. In a case of strong drag, the lowest energy topological excitation (vortex or persistent current) can consist of several circulation quanta. In the SQUID-type geometry, the circulation can becom...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000